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A recent trend in the design of liquid chromatography (LC) instrumentation is the move towards miniaturized
and portable systems. These smaller platforms provide wider flexibility in operation, with the opportunity

for conducting analysis directly at the point of sample collection rather than transporting the sample to a
centralized laboratory facility. For the manufacturing of pharmaceutical and biopharmaceutical products,
these platforms can be implemented for process monitoring and product characterization directly in
manufacturing environments. This article describes a portable, miniaturized LC instrument coupled to a
mass spectrometer (MS) for characterization of a biopharmaceutical monoclonal antibody (mAb).

Liquid chromatography (LC) continues
to be a crucial technique for chemical
analysis. The capability to effectively
separate and quantitate a broad range
of analytes in complex mixtures plays

a critical role in the characterization

of samples across a broad range of
application, including pharmaceutical,
environmental, clinical, forensic,
biomedical, and industrial/manufacturing.
Despite the importance across many
areas of laboratory testing over the past
six decades in which LC instruments have
been commercially available, their general
design has remained relatively constant.
Although many improvements have

been made to instrument components

to increase their reliability, robustness,
reproducibility, lifetime, and operating
range during that time, the standard
laboratory benchtop LC setup has seen
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few significant changes. In some ways,
this enduring format speaks to the high
confidence that many users have in the
operation of modern LC instruments,
typically abiding by the old adage “if it's
not broke, don't fix it”. However, in some
cases, thinking about new approaches

to LC technology can lead to significant
changes in the capabilities and

options available to analysts. Portable
instrumentation provides the opportunity
to perform analyses outside of laboratory
settings and directly at the point-of-need—
a capability that has seen growth for

both spectroscopic (1) and mass
spectrometric (MS) (2) analysis. Even

in more traditional testing environments,
the flexibility that a compact instrument
provides in terms of reduced footprint and
maneuverability can help enhance existing
workflows. Based on these advantages,

there has been a growing trend in the
development of compact and portable LC
instrumentation over the past decade (3).
Several properties have been used
to define portable LC technology,
including size, weight, power source
and consumption, ease of operation,
and waste generation (4). Some of
these factors, including reduced weight
and decreased mobile phase waste
generation, suggest the adoption of
capillary-scale LC columns for compact
and portable instruments. Operating
at flow rates that are 100-1000 times
lower than typical analytical-scale
LC methods minimizes the amount
of mobile phase that must be carried
with the instrument and the waste that
is generated during analysis. Work
towards achieving a completely portable
LC instrument over the past decade
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has focused on the development of
high-pressure capillary-scale pumps (5,6)
and detectors (7,8). The combination

of these components into an integrated,
portable instrument has resulted in

a commercialized LC platform (9).

In the literature, the use of this
instrument has been reported for the
analysis of cannabinoids (10), biocides
in wastewater (11), scopolamine
analysis in beverages (12), and online
monitoring of small volume synthetic
reactions (13). In addition, multiple
pharmaceutical companies have
tested its use for various needs in
their industry as part of an Enabling
Technologies Consortium project (14).

This article describes the practical
benefits of a miniaturized, portable
capillary-scale LC system for the
characterization of a biopharmaceutical
monoclonal antibody (mAb) sample.

Characterizing
Biopharmaceutical Antibodies
with Compact Capillary LC

An increasingly important use of LC-based
analysis is the characterization of
therapeutic mAbs in the biopharmaceutical
industry. A variety of critical quality
attributes (CQAs) of mAbs can be
measured as part of this characterization
using LC coupled to MS. Recently, we
explored the development of greener
characterization techniques by translating
various LC-MS mAb methods from

2.1 mm internal diameter (i.d.) columns

to 1.5 mmi.d. columns (15). In some
protein analysis methods, capillary-scale
LC columns are adopted as a result of low
quantities of available sample. Although
this is typically not the case for routine mAb
characterization in the biopharmaceutical
industry, scaling down to smaller column
diameters can significantly reduce
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the mobile phase consumption and
make these methods much greener.
Although the methods employed for
mADb analysis explored here are typical for
LC analysis of mAbs in general, some of
the new capillary LC system capabilities
are useful for biomacromolecule analysis
that differ from typical small molecule
LC analysis. To permit access of large
biomolecules to the stationary phase
located in the intraparticle space, the
typical pore size of 80-100 A was
increased to 1000 A. Restricted pore
access of mAbs can impact both retention
and peak width (16,17); therefore, ensuring
that the pore diameter is sufficiently large
is a crucial aspect of stationary phase
selection. The ability to install a wider variety
of columns in the cartridge of the system
used makes the adoption of wide-pore
particles for this application much easier.
To aid in protein recovery and reduce peak

Microlute®Sample Preparation
Reproducibility Delivered

Microlute”is a composite-based range
of sample preparation solutions that
delivers on reproducibility and reliability

Microlute® CP

for Solid Phase Extraction

Microlute® PLR

for Phospholipid Removal

Microlute® SLE

for Supported Liquid Extraction

Microlute® PPP

for Protein Precipitation

Discover more

www.microplates.com/microlute

Get in touch

int.sales@porvairsciences.com

www.chromatographyonline.com

pervair

sciences

25



http://www.microplates.com/microlute
mailto:int.sales@porvairsciences.com

LIBERT ET AL.

TABLE 1: Comparison of deconvoluted masses (reported in Da) obtained using compact capillary

LC-MS measurements in this study to comparable analytical-scale experiments reported in
reference 15. (Note: Theoretical mass for intact trastuzamab [GO/GOF] is 147,911 Da)

0.3 X 150mm [1.5/2.1] X 150mm
(This Study) (Reference 15)
Intact mAb (GO/GOF) 147,905 147,910
IdeS, Fc (GOF/GOF) 25,231 25,230
IdeS, Fab 97,628 97,628
Light Chain 23,441 23,446
Heavy Chain (GOF/GOF) 50,601 50,613

FIGURE 1: Mass chromatograms of (a) intact, (b) IdeS digested, and (c) reduced

trastuzamab using the compact LC platform coupled to a Q Exactive HF mass
spectrometer. Mobile phase A was water (with 0.1% DFA) and mobile phase B was 1:1
acetonitrile—n-propanol (with 0.1% DFA). The compact LC system was operated at

7 pL/min with gradients of 25-52.5%B over 5 min for (a), 20-50%B over 7 min for (b),
and 10-67%B over 10 min for (c). Full mass spectrum and a zoomed-in spectrum of the
+47, +48, and +49 charge states are shown in (d) and (e), respectively. Mass spectra
are also shown for the (f) Fc, (g) Fab, (h) light-chain, and (i) heavy-chain fragments.
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tailing, reversed-phase mAb methods
are typically operated at temperatures in
the range of 60-90 °C (18,19). A series

of mass chromatograms showing intact,
|deS digested, and reduced trastuzamab
samples are shown in Figure 1.

For these analyses, a 0.300 X 150 mm
column packed with 2.7-um 1000 A
diphenyl particles was installed into a
column cartridge for instrument use.

This wider pore material limited potential
restricted access to pores for these larger
biomolecules, especially for the ~150 kDa
intact mAb. The heated cartridge oven
was operated at 70 °C. The column was
connected to an electrospray ionization
probe for sample introduction into a high
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Intact

resolution mass spectrometer. The use

of this LC-MS arrangement provided
effective measurement of the molecular
weights of the mAb and mAb fragments,
aiding in the characterization of these
compounds. A comparison of the
deconvoluted masses for these peaks
between the current study and previously
reported analytical-scale experiments
(15) is shown in Table 1. To improve peak
shape, difluoroacetic acid (DFA) was
used as the primary acidic modifier in the
mobile phase instead of the more common
LC-MS formic acid (FA) additive, as this
substitution has been shown to reduce
peak widths for mAb analysis (20,21). In
addition, the composition of the organic

component of the mobile phase was a
1:1 mixture of acetonitrile and n-propanal,
as the addition of alcohol can further
improve peak shape, especially when
combined with elevated temperatures
(18,22). An intact trastuzamab peak
eluted with FA and acetonitrile is
compared to elution using DFA and an
acetonitrile—n-propanol blend in Figure 2.
Such improvements that have already
been observed with analytical-scale
separations translate well to capillary LC.

Conclusions

Trends in the miniaturization of LC
instruments provide for point-of-need
analysis with a significant reduction

in mobile phase consumption and

waste generation through the use of
capillary-scale techniques. Various parts
of a typical LC-MS workflow for the
analysis of biopharmaceutical products
were demonstrated using this LC platform
coupled directly to an MS system. This
greener LC approach could eventually be
used in biopharmaceutical manufacturing
settings, especially if used for more routine
monitoring of established processes with
an absorbance detector that is much
smaller than a typical MS system.

The analysis of an intact mAb compared
favourably between the compact
instrument and a traditional benchtop LC
system, showing the feasibility of eventually
adopting these greener methods for routine
biopharmaceutical characterization.
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FIGURE 2: LC-MS analysis of intact trastuzamab using formic
acid as modifier and acetonitrile as the organic mobile phase
component (top black trace) compared to using difluoroacetic
acid as modifier and 1:1 acetonitrile—n-propanol as the organic
mobile phase component (bottom blue trace).
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